Maximum modulus principles for radial solutions of quasilinear and fully nonlinear singular P.D.E's

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The maximum principles and symmetry results for viscosity solutions of fully nonlinear equations

This paper is concerned about maximum principles and radial symmetry for viscosity solutions of fully nonlinear partial differential equations. We obtain the radial symmetry and monotonicity properties for nonnegative viscosity solutions of F ( D2u ) + u = 0 in R (0.1) under the asymptotic decay rate u = o(|x|− 2 p−1 ) at infinity, where p > 1 (Theorem 1, Corollary 1). As a consequence of our s...

متن کامل

Existence of solutions for singular fully nonlinear equations

In this note we describe how to approximate some classes of singular equations by nonsingular equations. We obtain a solution to each nonsingular problem and estimates guaranteeing that the limiting function is a solution of the original problem.

متن کامل

Maximum principle for quasilinear stochastic PDEs with obstacle

We prove a maximum principle for local solutions of quasilinear stochastic PDEs with obstacle (in short OSPDE). The proofs are based on a version of Itô’s formula and estimates for the positive part of a local solution which is non-positive on the lateral boundary. Our method is based on a version of Moser’s iteration scheme developed first by Aronson and Serrin [2] in the context of non-linear...

متن کامل

Existence of Radial Solutions for Quasilinear Elliptic Equations with Singular Nonlinearities

We prove the existence of radial solutions of the quasilinear elliptic equation div(A(|Du|)Du) + f(u) = 0 in R, n > 1, where f is either negative or positive for small u > 0, possibly singular at u = 0, and growths subcritically for large u. Our proofs use only elementary arguments based on a variational identity. No differentiability assumptions are made on f .

متن کامل

Singular Control-Invariance PDEs for Nonlinear Systems

In the present study a new method is proposed that allows the derivation of control laws capable of enforcing the desirable dynamics on an invariant manifold in state space. The problem of interest naturally surfaces in broad classes of physical and chemical systems whose dynamic behavior needs to be controlled and favorably shaped by external driving forces. In particular, the formulation of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Belgian Mathematical Society - Simon Stevin

سال: 2007

ISSN: 1370-1444

DOI: 10.36045/bbms/1172852251